Products of threads.
Previous Page 2
Betty Hinman (1974)
Semigroup forum
Leland E. Rogers (1975)
Colloquium Mathematicae
George Janelidze, Manuela Sobral (2008)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Čerin, Zvonko (1994)
Mathematica Pannonica
Čerin, Zvonko (1996)
International Journal of Mathematics and Mathematical Sciences
Rose, David A. (1991)
International Journal of Mathematics and Mathematical Sciences
Enrique Castañeda-Alvarado, Ivon Vidal-Escobar (2017)
Commentationes Mathematicae Universitatis Carolinae
In this paper we construct a Kelley continuum such that is not semi-Kelley, this answers a question posed by J.J. Charatonik and W.J. Charatonik in A weaker form of the property of Kelley, Topology Proc. 23 (1998), 69–99. In addition, we show that the hyperspace is not semi- Kelley. Further we show that small Whitney levels in are not semi-Kelley, answering a question posed by A. Illanes in Problemas propuestos para el taller de Teoría de continuos y sus hiperespacios, Queretaro, 2013.
Bandy, C. (1991)
International Journal of Mathematics and Mathematical Sciences
Alejandro Illanes (2012)
Commentationes Mathematicae Universitatis Carolinae
Let be a continuum. Two maps are said to be pseudo-homotopic provided that there exist a continuum , points and a continuous function such that for each , and . In this paper we prove that if is the pseudo-arc, is one-to-one and is pseudo-homotopic to , then . This theorem generalizes previous results by W. Lewis and M. Sobolewski.
Nelly Kroonenberg (1976)
Compositio Mathematica
Previous Page 2