Previous Page 2

Displaying 21 – 30 of 30

Showing per page

Property of being semi-Kelley for the cartesian products and hyperspaces

Enrique Castañeda-Alvarado, Ivon Vidal-Escobar (2017)

Commentationes Mathematicae Universitatis Carolinae

In this paper we construct a Kelley continuum X such that X × [ 0 , 1 ] is not semi-Kelley, this answers a question posed by J.J. Charatonik and W.J. Charatonik in A weaker form of the property of Kelley, Topology Proc. 23 (1998), 69–99. In addition, we show that the hyperspace C ( X ) is not semi- Kelley. Further we show that small Whitney levels in C ( X ) are not semi-Kelley, answering a question posed by A. Illanes in Problemas propuestos para el taller de Teoría de continuos y sus hiperespacios, Queretaro, 2013.

Property Q.

Bandy, C. (1991)

International Journal of Mathematics and Mathematical Sciences

Pseudo-homotopies of the pseudo-arc

Alejandro Illanes (2012)

Commentationes Mathematicae Universitatis Carolinae

Let X be a continuum. Two maps g , h : X X are said to be pseudo-homotopic provided that there exist a continuum C , points s , t C and a continuous function H : X × C X such that for each x X , H ( x , s ) = g ( x ) and H ( x , t ) = h ( x ) . In this paper we prove that if P is the pseudo-arc, g is one-to-one and h is pseudo-homotopic to g , then g = h . This theorem generalizes previous results by W. Lewis and M. Sobolewski.

Currently displaying 21 – 30 of 30

Previous Page 2