Previous Page 3

Displaying 41 – 55 of 55

Showing per page

On the continuity of the elements of the Ellis semigroup and other properties

Salvador García-Ferreira, Yackelin Rodríguez-López, Carlos Uzcátegui (2021)

Commentationes Mathematicae Universitatis Carolinae

We consider discrete dynamical systems whose phase spaces are compact metrizable countable spaces. In the first part of the article, we study some properties that guarantee the continuity of all functions of the corresponding Ellis semigroup. For instance, if every accumulation point of X is fixed, we give a necessary and sufficient condition on a point a X ' in order that all functions of the Ellis semigroup E ( X , f ) be continuous at the given point a . In the second part, we consider transitive dynamical...

On the existence of true uniform ultrafilters

Petr Simon (2004)

Commentationes Mathematicae Universitatis Carolinae

We shall show that there is an ultrafilter on singular κ with countable cofinality, which cannot be reached from the set of all subuniform ultrafilters by iterating the closure of sets of size < κ .

On the homology of the Harmonic Archipelago

Umed Karimov, Dušan Repovš (2012)

Open Mathematics

We calculate the singular homology and Čech cohomology groups of the Harmonic Archipelago. As a corollary, we prove that this space is not homotopy equivalent to the Griffiths space. This is interesting in view of Eda’s proof that the first singular homology groups of these spaces are isomorphic.

On the k -Baire property

Alessandro Fedeli (1993)

Commentationes Mathematicae Universitatis Carolinae

In this note we show the following theorem: “Let X be an almost k -discrete space, where k is a regular cardinal. Then X is k + -Baire iff it is a k -Baire space and every point- k open cover 𝒰 of X such that card ( 𝒰 ) k is locally- k at a dense set of points.” For k = 0 we obtain a well-known characterization of Baire spaces. The case k = 1 is also discussed.

On topological and algebraic structure of extremally disconnected semitopological groups

Aleksander V. Arhangel'skii (2000)

Commentationes Mathematicae Universitatis Carolinae

Starting with a very simple proof of Frol’ık’s theorem on homeomorphisms of extremally disconnected spaces, we show how this theorem implies a well known result of Malychin: that every extremally disconnected topological group contains an open and closed subgroup, consisting of elements of order 2 . We also apply Frol’ık’s theorem to obtain some further theorems on the structure of extremally disconnected topological groups and of semitopological groups with continuous inverse. In particular, every...

On uncountable collections of continua and their span

Dušan Repovš, Arkadij Skopenkov, Evgenij Ščepin (1996)

Colloquium Mathematicae

We prove that if the Euclidean plane 2 contains an uncountable collection of pairwise disjoint copies of a tree-like continuum X, then the symmetric span of X is zero, sX = 0. We also construct a modification of the Oversteegen-Tymchatyn example: for each ε > 0 there exists a tree X 2 such that σX < ε but X cannot be covered by any 1-chain. These are partial solutions of some well-known problems in continua theory.

On weakly monotonically monolithic spaces

Liang-Xue Peng (2010)

Commentationes Mathematicae Universitatis Carolinae

In this note, we introduce the concept of weakly monotonically monolithic spaces, and show that every weakly monotonically monolithic space is a D -space. Thus most known conclusions on D -spaces can be obtained by this conclusion. As a corollary, we have that if a regular space X is sequential and has a point-countable w c s * -network then X is a D -space.

Ordinal remainders of classical ψ-spaces

Alan Dow, Jerry E. Vaughan (2012)

Fundamenta Mathematicae

Let ω denote the set of natural numbers. We prove: for every mod-finite ascending chain T α : α < λ of infinite subsets of ω, there exists [ ω ] ω , an infinite maximal almost disjoint family (MADF) of infinite subsets of the natural numbers, such that the Stone-Čech remainder βψ∖ψ of the associated ψ-space, ψ = ψ(ω,ℳ ), is homeomorphic to λ + 1 with the order topology. We also prove that for every λ < ⁺, where is the tower number, there exists a mod-finite ascending chain T α : α < λ , hence a ψ-space with Stone-Čech remainder...

Currently displaying 41 – 55 of 55

Previous Page 3