A suspension theorem for the proper homotopy and strong shape theories
We give a topological version of a Bertini type theorem due to Abhyankar. A new definition of a branched covering is given. If the restriction of the natural projection π: Y × Z → Y to a closed set V ⊂ Y × Z is a branched covering then, under certain assumptions, we can obtain generators of the fundamental group π₁((Y×Z).
Two direct relations are exhibited between the Whitehead product for track groups studied in [4] and the generalized Whitehead product in the sense of Arkowitz. The problem of determining the order of the Whitehead square is posed and some computations given.
We prove a Z-set unknotting theorem for Nöbeling spaces.