Counting rational curves of arbitrary shape in projective spaces.
We define Peano covering maps and prove basic properties analogous to classical covers. Their domain is always locally path-connected but the range may be an arbitrary topological space. One of characterizations of Peano covering maps is via the uniqueness of homotopy lifting property for all locally path-connected spaces. Regular Peano covering maps over path-connected spaces are shown to be identical with generalized regular covering maps introduced by Fischer and Zastrow....
The purpose of this article is to introduce a method for computing the homology groups of cellular complexes composed of cubes. We will pay attention to issues of storage and efficiency in performing computations on large complexes which will be required in applications to the computation of the Conley index. The algorithm used in the homology computations is based on a local reduction procedure, and we give a subquadratic estimate of its computational complexity. This estimate is rigorous in two...
A characterisation of trivial 1-cohomology, in terms of some connectedness condition, is presented for a broad class of metric spaces.