On complex structures in 8-dimensional vector bundles.
We study invariant contact -spheres on principal circle-bundles and solve the corresponding existence problem in dimension 3. Moreover, we show that contact - spheres can only exist on -dimensional manifolds and we construct examples of contact -spheres on such manifolds. We also consider relations between tautness and roundness, a regularity property concerning the Reeb vector fields of the contact forms in a contact -sphere.
In this paper we work in o-minimal structures with definable Skolem functions, and show that: (i) a Hausdorff definably compact definable space is definably normal; (ii) a continuous definable map between Hausdorff locally definably compact definable spaces is definably proper if and only if it is a proper morphism in the category of definable spaces. We give several other characterizations of definably proper, including one involving the existence of limits of definable types. We also prove the...
The behavior of special classes of isometric foldings of the Riemannian sphere under the action of angular conformal deformations is considered. It is shown that within these classes any isometric folding is continuously deformable into the standard spherical isometric folding defined by .
Let f: X → Y be a closed n-dimensional surjective map of metrizable spaces. It is shown that if Y is a C-space, then: (1) the set of all maps g: X → ⁿ with dim(f △ g) = 0 is uniformly dense in C(X,ⁿ); (2) for every 0 ≤ k ≤ n-1 there exists an -subset of X such that and the restriction is (n-k-1)-dimensional. These are extensions of theorems by Pasynkov and Toruńczyk, respectively, obtained for finite-dimensional spaces. A generalization of a result due to Dranishnikov and Uspenskij about...
We work in the smooth category: manifolds and maps are meant to be smooth. Let G be a finite group acting on a connected closed manifold X and f an equivariant self-map on X with f|A fixpointfree, where A is a closed invariant submanifold of X with codim A ≥ 3. The purpose of this paper is to give a proof using obstruction theory of the following fact: If X is simply connected and the action of G on X - A is free, then f is equivariantly deformable rel. A to fixed point free map if and only if the...