On approximate n-connectedness
Let K*(A;Z/ln) denote the mod-ln algebraic K-theory of a Z[1/l]-algebra A. Snaith ([14], [15], [16]) has studied Bott-periodic algebraic theory Ki(A;Z/ln)[1/βn], a localized version of K*(A;Z/ln) obtained by inverting a Bott element βn. For l an odd prime, Snaith has given a description of K*(A;Z/ln)[1/βn] using Adams maps between Moore spectra. These constructions are interesting, in particular for their connections with Lichtenbaum-Quillen conjecture [16].In this paper we obtain a description...
The -fold product of an arbitrary space usually supports only the obvious permutation action of the symmetric group . However, if is a -complete, homotopy associative, homotopy commutative -space one can define a homotopy action of on . In various cases, e.g. if multiplication by is null homotopic then we get a homotopy action of for some . After one suspension this allows one to split using idempotents of which can be lifted to . In fact all of this is possible if is an -space...
We are interested in the problem of describing compact solvmanifolds admitting symplectic and Kählerian structures. This was first considered in [3, 4] and [7]. These papers used the Hattori theorem concerning the cohomology of solvmanifolds hence the results obtained covered only the completely solvable case}. Our results do not use the assumption of complete solvability. We apply our methods to construct a new example of a compact symplectic non-Kählerian solvmanifold.