Localization in Group Theory and Homotopy Theory.
Peter Hilton (1977)
Jahresbericht der Deutschen Mathematiker-Vereinigung
Dundas, Bjørn Ian (2001)
Theory and Applications of Categories [electronic only]
Lin Hong, Wenhuai Shen (1994)
Compositio Mathematica
Irene Llerena (1984/1985)
Mathematische Zeitschrift
Irene Llerena (1982)
Collectanea Mathematica
H. Moscovici, F.-B. Wu (1994)
Geometric and functional analysis
Neira, Clara Marina, Varela, Januario (2007)
Revista Colombiana de Matemáticas
H.-W. Henn, J. Lannes, L. Schwartz (1995)
Mathematische Annalen
Georg Peschke (1989)
Publicacions Matemàtiques
When localizing the semidirect product of two groups, the effect on the factors is made explicit. As an application in Topology, we show that the loop space of a based connected CW-complex is a P-local group, up to homotopy, if and only if π1X and the free homotopy groups [Sk-1, ΩX], k ≥ 2, are P-local.
Czes Kosniowski (1973)
Mathematische Annalen
Mirosław Ślosarski (2011)
Discussiones Mathematicae, Differential Inclusions, Control and Optimization
In this paper we generalize the class of admissible mappings as due by L. Górniewicz in 1976. Namely we define the notion of locally admissible mappings. Some properties and applications to the fixed point problem are presented.
Z. Cerin (1977)
Publications de l'Institut Mathématique [Elektronische Ressource]
Zvonko Čerin (1977)
Publications de l'Institut Mathématique
Guido Mislin, Eric M. Friedlander (1986)
Inventiones mathematicae
Mauro Francaviglia, M. Palese, E. Winterroth (2012)
Communications in Mathematics
We introduce the concept of conserved current variationally associated with locally variational invariant field equations. The invariance of the variation of the corresponding local presentation is a sufficient condition for the current beeing variationally equivalent to a global one. The case of a Chern-Simons theory is worked out and a global current is variationally associated with a Chern-Simons local Lagrangian.
G. Kozlowski, Jack Segal (1977)
Fundamenta Mathematicae
Tammo Tom Dieck (1971)
Mathematische Zeitschrift
H. Scheerer (1980)
Compositio Mathematica
Yves Felix, Stephen Halperin (1990)
Mathematische Annalen
David Blanc (1997)
Fundamenta Mathematicae
We describe an obstruction theory for an H-space X to be a loop space, in terms of higher homotopy operations taking values in . These depend on first algebraically “delooping” the Π-algebras , using the H-space structure on X, and then trying to realize the delooped Π-algebra.