Displaying 41 – 60 of 118

Showing per page

The homotopy dimension of codiscrete subsets of the 2-sphere 𝕊²

J. W. Cannon, G. R. Conner (2007)

Fundamenta Mathematicae

Andreas Zastrow conjectured, and Cannon-Conner-Zastrow proved, that filling one hole in the Sierpiński curve with a disk results in a planar Peano continuum that is not homotopy equivalent to a 1-dimensional set. Zastrow's example is the motivation for this paper, where we characterize those planar Peano continua that are homotopy equivalent to 1-dimensional sets. While many planar Peano continua are not homotopy equivalent to 1-dimensional compacta, we prove that each has fundamental group that...

The homotopy groups of the L2 -localization of a certain type one finite complex at the prime 3

Yoshitaka Nakazawa, Katsumi Shimomura (1997)

Fundamenta Mathematicae

For the Brown-Peterson spectrum BP at the prime 3, v 2 denotes Hazewinkel’s second polynomial generator of B P * . Let L 2 denote the Bousfield localization functor with respect to v 2 - 1 B P . A typical example of type one finite spectra is the mod 3 Moore spectrum M. In this paper, we determine the homotopy groups π * ( L 2 M X ) for the 8 skeleton X of BP.

The Milgram non-operad

Michael Brinkmeier (1999)

Annales de l'institut Fourier

C. Berger claimed to have constructed an E n -operad-structure on the permutohedras, whose associated monad is exactly the Milgram model for the free loop spaces. In this paper I will show that this statement is not correct.

The monoid of suspensions and loops modulo Bousfield equivalence

Jeff Strom (2008)

Fundamenta Mathematicae

The suspension and loop space functors, Σ and Ω, operate on the lattice of Bousfield classes of (sufficiently highly connected) topological spaces, and therefore generate a submonoid ℒ of the complete set of operations on the Bousfield lattice. We determine the structure of ℒ in terms of a single parameter of homotopy theory which is closely tied to the problem of desuspending weak cellular inequalities.

The multi-morphisms and their properties and applications

Mirosław Ślosarski (2015)

Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica

In this paper a new class of multi-valued mappings (multi-morphisms) is defined as a version of a strongly admissible mapping, and its properties and applications are presented.

The Mumford conjecture

Geoffrey Powell (2004/2005)

Séminaire Bourbaki

The Mumford Conjecture asserts that the rational cohomology of the stable moduli space of Riemann surfaces is a polynomial algebra on the Mumford-Morita-Miller characteristic classes; this can be reformulated in terms of the classifying space B Γ derived from the mapping class groups. The conjecture admits a topological generalization, inspired by Tillmann’s theorem that B Γ admits an infinite loop space structure after applying Quillen’s plus construction. The text presents the proof by Madsen and...

Currently displaying 41 – 60 of 118