On the Homology of Non-Connected Monoids and Their Associated Groups
We prove that for n > 1 the space of proper maps P 0(n, k) and the space of local maps F 0(n, k) are not homotopy equivalent.
Let R be a subring ring of Q. We reserve the symbol p for the least prime which is not a unit in R; if R ⊒Q, then p=∞. Denote by DGL nnp, n≥1, the category of (n-1)-connected np-dimensional differential graded free Lie algebras over R. In [1] D. Anick has shown that there is a reasonable concept of homotopy in the category DGL nnp. In this work we intend to answer the following two questions: Given an object (L(V), ϖ) in DGL n3n+2 and denote by S(L(V), ϖ) the class of objects homotopy equivalent...
A connection on a principal G-bundle may be identified with a smooth group morphism H : GL∞(M) → G, called a holonomy, where GL∞(M) is a group of equivalence classes of loops on the base M. The present article focuses on the kernel of this morphism, which consists of the classes of loops along which parallel transport is trivial. Use is made of a formula expressing the gauge potential as a suitable derivative of the holonomy, allowing a different proof of a theorem of Lewandowski’s, which states...
In this short note we compute the Chas-Sullivan BV-algebra structure on the singular homology of the free loop space of complex projective spaces. We compare this result with computations in Hochschild cohomology.