The search session has expired. Please query the service again.
The problem of the characterization of graded Lie algebras which admit a realization as the homotopy Lie algebra of a space of type is discussed. The central results are formulated in terms of varieties of structure constants, several criterions for concrete algebras are also deduced.
The theory of covering spaces is often used to prove the Nielsen-Schreier theorem, which states that every subgroup of a free group is free. We apply the more general theory of semicovering spaces to obtain analogous subgroup theorems for topological groups: Every open subgroup of a free Graev topological group is a free Graev topological group. An open subgroup of a free Markov topological group is a free Markov topological group if and only if it is disconnected.
Currently displaying 41 –
53 of
53