The geometry of a vector bundle endowed with a cone field.
The Mumford Conjecture asserts that the rational cohomology of the stable moduli space of Riemann surfaces is a polynomial algebra on the Mumford-Morita-Miller characteristic classes; this can be reformulated in terms of the classifying space derived from the mapping class groups. The conjecture admits a topological generalization, inspired by Tillmann’s theorem that admits an infinite loop space structure after applying Quillen’s plus construction. The text presents the proof by Madsen and...
We prove that the rational homotopy type of the configuration space of two points in a -connected closed manifold depends only on the rational homotopy type of that manifold and we give a model in the sense of Sullivan of that configuration space. We also study the formality of configuration spaces.
For a real central arrangement , Salvetti introduced a construction of a finite complex Sal which is homotopy equivalent to the complement of the complexified arrangement in [Sal87]. For the braid arrangement , the Salvetti complex Sal serves as a good combinatorial model for the homotopy type of the configuration space of points in , which is homotopy equivalent to the space of k little -cubes. Motivated by the importance of little cubes in homotopy theory, especially in the study of...