Displaying 601 – 620 of 689

Showing per page

The Weil algebra and the Van Est isomorphism

Camilo Arias Abad, Marius Crainic (2011)

Annales de l’institut Fourier

This paper belongs to a series of papers devoted to the study of the cohomology of classifying spaces. Generalizing the Weil algebra of a Lie algebra and Kalkman’s BRST model, here we introduce the Weil algebra W ( A ) associated to any Lie algebroid A . We then show that this Weil algebra is related to the Bott-Shulman complex (computing the cohomology of the classifying space) via a Van Est map and we prove a Van Est isomorphism theorem. As application, we generalize and find a simpler more conceptual...

Théorie de jauge et symétries des fibrés

D. Brandt, Jean-Claude Hausmann (1993)

Annales de l'institut Fourier

Soit ξ un G -fibré principal différentiable sur une variété M ( G un groupe de Lie compact). Étant donné une action d’un groupe de Lie compact Γ sur M , on se pose la question de savoir si elle provient d’une action sur le fibré ξ . L’originalité de ce travail est de relier ce problème à l’existence de points fixes pour les actions de Γ que l’on induit naturellement sur divers espaces de modules de G -connexions sur ξ .

Topological realization of a family of pseudoreflection groups

Dietrich Notbohm (1998)

Fundamenta Mathematicae

We are interested in a topological realization of a family of pseudoreflection groups G G L ( n , F p ) ; i.e. we are looking for topological spaces whose mod-p cohomology is isomorphic to the ring of invariants F p [ x 1 , . . . , x n ] G . Spaces of this type give partial answers to a problem of Steenrod, namely which polynomial algebras over F p can appear as the mod-p cohomology of a space. The family under consideration is given by pseudoreflection groups which are subgroups of the wreath product / q Σ n where q divides p - 1 and where p is...

Currently displaying 601 – 620 of 689