Mean curvature functions for codimension-one foliations with all leaves compact
This note is based on a theorem of Sacksteder which generalizes a classical result of Denjoy. Using this theorem and results on the existence of invariant measures, new results are obtained concerning minimal sets for groups of diffeomorphisms of the circle and for foliations of codimension one.
Suppose M is a noncompact connected n-manifold and ω is a good Radon measure of M with ω(∂M) = 0. Let ℋ(M,ω) denote the group of ω-preserving homeomorphisms of M equipped with the compact-open topology, and the subgroup consisting of all h ∈ ℋ(M,ω) which fix the ends of M. S. R. Alpern and V. S. Prasad introduced the topological vector space (M,ω) of end charges of M and the end charge homomorphism , which measures for each the mass flow toward ends induced by h. We show that the map has...
A metabelian group G acting as automorphism group on a compact Riemann surface of genus g ≥ 2 has order less than or equal to 16(g-1). We calculate for which values of g this bound is achieved and on these cases we calculate a presentation of the group G.
We summarize here the main ideas and results of our papers [28], [14], as presented at the 2013 CIRM Meeting on Discrete curvature and we augment these by bringing up an application of one of our main results, namely to solving a problem regarding cube complexes.