Erratum to "Classification of simple knots by Levine pairings".
Nous donnons, sous certaines conditions, une méthode générale de construction d’un arc de représentations non métabéliennes d’extrémité une représentation abélienne donnée du groupe d’un noeud d’une sphère d’homologie rationnelle dans un groupe de Lie complexe connexe réductif. Nous déterminons également la structure locale de la variété des représentations au voisinage de la représentation abélienne.
On étudie quelques propriétés différentiables de l’espace , quotient du tore par un hyperplan irrationnel . On montre d’une part que le groupe des composantes connexes de Diff est isomorphe au groupe des unités de l’algèbre des matrices à coefficients entiers qui stabilisent , et d’autre part que ce groupe est isomorphe au groupe des unités d’un ordre d’un corps de nombres algébriques.
Birman and Menasco (1994) introduced and studied a class of embedded tori in closed braid complements which admit a standard tiling. The geometric description of the tori from this class was not complete. Ng showed (1988) that each essential torus in a closed braid complement which admits a standard tiling possesses a staircase tiling pattern. In this paper, we introduce and study the so-called longitude-meridional patterns for essential tori admitting a standard tiling. A longitude-meridional...
The states of the title are a set of knot types which suffice to create a generating set for the Kauffman bracket skein module of a manifold. The minimum number of states is a topological invariant, but quite difficult to compute. In this paper we show that a set of states determines a generating set for the ring of characters of the fundamental group, which in turn provides estimates of the invariant.
Dans cet article, on montre que l’espace des groupes marqués est un sous-espace fermé d’un ensemble de Cantor dont la dimension de Hausdorff est infinie. On prouve que la dimension de Minkowski de cet espace est infinie en exhibant des sous-ensembles de groupes marqués à petite simplification dont les dimensions de Minkowski sont arbitrairement grandes. On donne une estimation des dimensions de Minkowski de sous-espaces de groupes à un relateur. On démontre enfin que les dimensions de Minkowski...
Cet article contient une démonstration géométrique simple de pour .Ce résultat (démontré aussi par Mather comme corollaire d’un théorème beaucoup plus général) apparaît comme une conséquence du théorème de Michael Herman : .L’appendice contient une étude des structures sur les surfaces et un résultat sur la cohomologie de .