Presentations for the punctured mapping class groups in terms of Artin groups.
Nous présentons la preuve de la conjecture de Poincaré, concernant les variétés compactes simplement connexes de dimension , proposée par G. Perel’man. Elle repose sur l’étude de l’évolution de métriques riemanniennes sous le flot de la courbure de Ricci et sur les travaux antérieurs de R. Hamilton. Après une introduction aux techniques analytiques et géométriques développées par R. Hamilton, nous tentons de décrire la méthode de chirurgie métrique utilisée par G. Perel’man pour franchir les temps...
We present a characterization of those open n-manifolds (n ≥ 5) whose products with the real line are homeomorphic to interiors of compact (n+1)-manifolds with boundary.
It is proved that two planes that are properly homotopic in a noncompact, orientable, irreducible 3-manifold that is not homeomorphic to are isotopic. The end-reduction techniques of E. M. Brown and C. D. Feustal and M. G. Brin and T. L. Thickstun are used.
We give a short proof of the proportionality principle for cusped hyperbolic manifolds.
Two dynamical deformation theories are presented – one for surface homeomorphisms, called pruning, and another for graph endomorphisms, called kneading – both giving conditions under which all of the dynamics in an open set can be destroyed, while leaving the dynamics unchanged elsewhere. The theories are related to each other and to Thurston’s classification of surface homeomorphisms up to isotopy.