Previous Page 2

Displaying 21 – 33 of 33

Showing per page

Preuve de la conjecture de Poincaré en déformant la métrique par la courbure de Ricci

Gérard Besson (2004/2005)

Séminaire Bourbaki

Nous présentons la preuve de la conjecture de Poincaré, concernant les variétés compactes simplement connexes de dimension 3 , proposée par G. Perel’man. Elle repose sur l’étude de l’évolution de métriques riemanniennes sous le flot de la courbure de Ricci et sur les travaux antérieurs de R. Hamilton. Après une introduction aux techniques analytiques et géométriques développées par R. Hamilton, nous tentons de décrire la méthode de chirurgie métrique utilisée par G. Perel’man pour franchir les temps...

Products of open manifolds with ℝ

Craig R. Guilbault (2007)

Fundamenta Mathematicae

We present a characterization of those open n-manifolds (n ≥ 5) whose products with the real line are homeomorphic to interiors of compact (n+1)-manifolds with boundary.

Properly homotopic nontrivial planes are isotopic

Bobby Winters (1995)

Fundamenta Mathematicae

It is proved that two planes that are properly homotopic in a noncompact, orientable, irreducible 3-manifold that is not homeomorphic to 3 are isotopic. The end-reduction techniques of E. M. Brown and C. D. Feustal and M. G. Brin and T. L. Thickstun are used.

Pruning theory and Thurston's classification of surface homeomorphisms

André de Carvalho, Toby Hall (2001)

Journal of the European Mathematical Society

Two dynamical deformation theories are presented – one for surface homeomorphisms, called pruning, and another for graph endomorphisms, called kneading – both giving conditions under which all of the dynamics in an open set can be destroyed, while leaving the dynamics unchanged elsewhere. The theories are related to each other and to Thurston’s classification of surface homeomorphisms up to isotopy.

Currently displaying 21 – 33 of 33

Previous Page 2