Displaying 41 – 60 of 151

Showing per page

A non-𝒵-compactifiable polyhedron whose product with the Hilbert cube is 𝒵-compactifiable

C. R. Guilbault (2001)

Fundamenta Mathematicae

We construct a locally compact 2-dimensional polyhedron X which does not admit a 𝒵-compactification, but which becomes 𝒵-compactifiable upon crossing with the Hilbert cube. This answers a long-standing question posed by Chapman and Siebenmann in 1976 and repeated in the 1976, 1979 and 1990 versions of Open Problems in Infinite-Dimensional Topology. Our solution corrects an error in the 1990 problem list.

A note on linear mappings between function spaces

Jan Baars (1993)

Commentationes Mathematicae Universitatis Carolinae

Arhangel’skiǐ proved that if X and Y are completely regular spaces such that C p ( X ) and C p ( Y ) are linearly homeomorphic, then X is pseudocompact if and only if Y is pseudocompact. In addition he proved the same result for compactness, σ -compactness and realcompactness. In this paper we prove that if φ : C p ( X ) C p ( X ) is a continuous linear surjection, then Y is pseudocompact provided X is and if φ is a continuous linear injection, then X is pseudocompact provided Y is. We also give examples that both statements do not hold...

A Polish AR-Space with no Nontrivial Isotopy

Tadeusz Dobrowolski (2008)

Bulletin of the Polish Academy of Sciences. Mathematics

The Polish space Y constructed in [vM1] admits no nontrivial isotopy. Yet, there exists a Polish group that acts transitively on Y.

Currently displaying 41 – 60 of 151