Displaying 61 – 80 of 151

Showing per page

A proof of Reidemeister-Singer’s theorem by Cerf’s methods

François Laudenbach (2014)

Annales de la faculté des sciences de Toulouse Mathématiques

Heegaard splittings and Heegaard diagrams of a closed 3-manifold M are translated into the language of Morse functions with Morse-Smale pseudo-gradients defined on M . We make use in a very simple setting of techniques which Jean Cerf developed for solving a famous pseudo-isotopy problem. In passing, we show how to cancel the supernumerary local extrema in a generic path of functions when dim M > 2 . The main tool that we introduce is an elementary swallow tail lemma which could be useful elsewhere.

A set of moves for Johansson representation of 3-manifolds

Rubén Vigara (2006)

Fundamenta Mathematicae

A Dehn sphere Σ in a closed 3-manifold M is a 2-sphere immersed in M with only double curve and triple point singularities. The Dehn sphere Σ fills M if it defines a cell decomposition of M. The inverse image in S² of the double curves of Σ is the Johansson diagram of Σ and if Σ fills M it is possible to reconstruct M from the diagram. A Johansson representation of M is the Johansson diagram of a filling Dehn sphere of M. Montesinos proved that every closed 3-manifold has a Johansson representation...

A short introduction to shadows of 4-manifolds

Francesco Costantino (2005)

Fundamenta Mathematicae

We give a self-contained introduction to the theory of shadows as a tool to study smooth 3-manifolds and 4-manifolds. The goal of the present paper is twofold: on the one hand, it is intended to be a shortcut to a basic use of the theory of shadows, on the other hand it gives a sketchy overview of some of the most recent results on shadows. No original result is proved here and most of the details of the proofs are left out.

A spectral sequence for orbifold cobordism

Andrés Ángel (2009)

Banach Center Publications

The aim of this paper is to introduce a spectral sequence that converges to the cobordism groups of orbifolds with given isotropy representations. In good cases the E¹-term of this spectral sequence is given by a certain cobordism group of orbibundles over purely ineffective orbifolds which can be identified with the bordism group of the classifying space of the Weyl group of a finite subgroup of O(n). We use this spectral sequence to calculate some cobordism groups of orbifolds for low dimensions,...

A vanishing theorem for twisted Alexander polynomials with applications to symplectic 4-manifolds

Stefan Friedl, Stefano Vidussi (2013)

Journal of the European Mathematical Society

In this paper we show that given any 3-manifold N and any non-fibered class in H 1 ( N ; Z ) there exists a representation such that the corresponding twisted Alexander polynomial is zero. We obtain this result by extending earlier work of ours and by combining this with recent results of Agol and Wise on separability of 3-manifold groups. This result allows us to completely classify symplectic 4-manifolds with a free circle action, and to determine their symplectic cones.

Currently displaying 61 – 80 of 151