The search session has expired. Please query the service again.
Displaying 41 –
60 of
162
It is known that the order of a finite group of diffeomorphisms of a 3-dimensional handlebody of genus g > 1 is bounded by the linear polynomial 12(g-1), and that the order of a finite group of diffeomorphisms of a 4-dimensional handlebody (or equivalently, of its boundary 3-manifold), faithful on the fundamental group, is bounded by a quadratic polynomial in g (but not by a linear one). In the present paper we prove a generalization for handlebodies of arbitrary dimension d, uniformizing handlebodies...
The notion of locally -incomparable families of compacta was introduced by K. Borsuk [KB]. In this paper we shall construct uncountable locally -incomparable families of different types of finite-dimensional Cantor manifolds.
Let be a non-trivial knot in the -sphere, its exterior, its group, and its peripheral subgroup. We show that is malnormal in , namely that for any with , unless is in one of the following three classes: torus knots, cable knots, and composite knots; these are exactly the classes for which there exist annuli in attached to which are not boundary parallel (Theorem 1 and Corollary 2). More generally, we characterise malnormal peripheral subgroups in the fundamental group of a...
This is a survey of results and open problems on compact 3-manifolds which admit spines corresponding to cyclic presentations of groups. We also discuss questions concerning spines of knot manifolds and regular neighborhoods of homotopically PL embedded compacta in 3-manifolds.
We prove that four manifolds diffeomorphic on the complement of a point have the same Donaldson invariants.
Currently displaying 41 –
60 of
162