Displaying 61 – 80 of 1237

Showing per page

A Polish AR-Space with no Nontrivial Isotopy

Tadeusz Dobrowolski (2008)

Bulletin of the Polish Academy of Sciences. Mathematics

The Polish space Y constructed in [vM1] admits no nontrivial isotopy. Yet, there exists a Polish group that acts transitively on Y.

A proof of Reidemeister-Singer’s theorem by Cerf’s methods

François Laudenbach (2014)

Annales de la faculté des sciences de Toulouse Mathématiques

Heegaard splittings and Heegaard diagrams of a closed 3-manifold M are translated into the language of Morse functions with Morse-Smale pseudo-gradients defined on M . We make use in a very simple setting of techniques which Jean Cerf developed for solving a famous pseudo-isotopy problem. In passing, we show how to cancel the supernumerary local extrema in a generic path of functions when dim M > 2 . The main tool that we introduce is an elementary swallow tail lemma which could be useful elsewhere.

A set of moves for Johansson representation of 3-manifolds

Rubén Vigara (2006)

Fundamenta Mathematicae

A Dehn sphere Σ in a closed 3-manifold M is a 2-sphere immersed in M with only double curve and triple point singularities. The Dehn sphere Σ fills M if it defines a cell decomposition of M. The inverse image in S² of the double curves of Σ is the Johansson diagram of Σ and if Σ fills M it is possible to reconstruct M from the diagram. A Johansson representation of M is the Johansson diagram of a filling Dehn sphere of M. Montesinos proved that every closed 3-manifold has a Johansson representation...

A short introduction to shadows of 4-manifolds

Francesco Costantino (2005)

Fundamenta Mathematicae

We give a self-contained introduction to the theory of shadows as a tool to study smooth 3-manifolds and 4-manifolds. The goal of the present paper is twofold: on the one hand, it is intended to be a shortcut to a basic use of the theory of shadows, on the other hand it gives a sketchy overview of some of the most recent results on shadows. No original result is proved here and most of the details of the proofs are left out.

A spectral sequence for orbifold cobordism

Andrés Ángel (2009)

Banach Center Publications

The aim of this paper is to introduce a spectral sequence that converges to the cobordism groups of orbifolds with given isotropy representations. In good cases the E¹-term of this spectral sequence is given by a certain cobordism group of orbibundles over purely ineffective orbifolds which can be identified with the bordism group of the classifying space of the Weyl group of a finite subgroup of O(n). We use this spectral sequence to calculate some cobordism groups of orbifolds for low dimensions,...

Currently displaying 61 – 80 of 1237