Displaying 101 – 120 of 130

Showing per page

Topological classification of closed convex sets in Fréchet spaces

Taras Banakh, Robert Cauty (2011)

Studia Mathematica

We prove that each non-separable completely metrizable convex subset of a Fréchet space is homeomorphic to a Hilbert space. This resolves a more than 30 years old problem of infinite-dimensional topology. Combined with the topological classification of separable convex sets due to Klee, Dobrowolski and Toruńczyk, this result implies that each closed convex subset of a Fréchet space is homeomorphic to [ 0 , 1 ] × [ 0 , 1 ) m × ( κ ) for some cardinals 0 ≤ n ≤ ω, 0 ≤ m ≤ 1 and κ ≥ 0.

Topological classification of multiaxial U ( n ) -actions (with an appendix by Jared Bass)

Sylvain Cappell, Shmuel Weinberger, Min Yan (2015)

Journal of the European Mathematical Society

This paper begins the classification of topological actions on manifolds by compact, connected, Lie groups beyond the circle group. It treats multiaxial topological actions of unitary and symplectic groups without the dimension restrictions used in earlier works by M. Davis and W. C. Hsiang on differentiable actions. The general results are applied to give detailed calculations for topological actions homotopically modeled on standard multiaxial representation spheres. In the present topological...

Topological classification of strong duals to nuclear (LF)-spaces

Taras Banakh (2000)

Studia Mathematica

We show that the strong dual X’ to an infinite-dimensional nuclear (LF)-space is homeomorphic to one of the spaces: ω , , Q × , ω × , or ( ) ω , where = l i m n and Q = [ - 1 , 1 ] ω . In particular, the Schwartz space D’ of distributions is homeomorphic to ( ) ω . As a by-product of the proof we deduce that each infinite-dimensional locally convex space which is a direct limit of metrizable compacta is homeomorphic either to or to Q × . In particular, the strong dual to any metrizable infinite-dimensional Montel space is homeomorphic either...

Topological groups and convex sets homeomorphic to non-separable Hilbert spaces

Taras Banakh, Igor Zarichnyy (2008)

Open Mathematics

Let X be a topological group or a convex set in a linear metric space. We prove that X is homeomorphic to (a manifold modeled on) an infinite-dimensional Hilbert space if and only if X is a completely metrizable absolute (neighborhood) retract with ω-LFAP, the countable locally finite approximation property. The latter means that for any open cover 𝒰 of X there is a sequence of maps (f n: X → X)nεgw such that each f n is 𝒰 -near to the identity map of X and the family f n(X)n∈ω is locally finite...

Topological manifolds and real algebraic geometry

Alberto Tognoli (2003)

Bollettino dell'Unione Matematica Italiana

We study the problem of approximating, up to homotopy, compact topological manifolds by real algebraic varieties. As a consequence, we realize any integral non-degenerate quadratic form as the intersection form of a real algebraic variety. This is related to a well-known result, due to Freedman [F], on the topology of closed simply-connected topological 4 -manifolds.

Topological structure of the space of lower semi-continuous functions

Katsuro Sakai, Shigenori Uehara (2006)

Commentationes Mathematicae Universitatis Carolinae

Let L ( X ) be the space of all lower semi-continuous extended real-valued functions on a Hausdorff space X , where, by identifying each f with the epi-graph epi ( f ) , L ( X ) is regarded the subspace of the space Cld F * ( X × ) of all closed sets in X × with the Fell topology. Let LSC ( X ) = { f L ( X ) f ( X ) , f ( X ) ( - , ] } and LSC B ( X ) = { f L ( X ) f ( X ) is a bounded subset of } . We show that L ( X ) is homeomorphic to the Hilbert cube Q = [ - 1 , 1 ] if and only if X is second countable, locally compact and infinite. In this case, it is proved that ( L ( X ) , LSC ( X ) , LSC B ( X ) ) is homeomorphic to ( Cone Q , Q × ( 0 , 1 ) , Σ × ( 0 , 1 ) ) (resp. ( Q , s , Σ ) ) if X is compact (resp. X is non-compact), where Cone Q = ( Q × 𝐈 ) / ( Q × { 1 } ) is the cone over...

Topologically invariant σ-ideals on Euclidean spaces

T. Banakh, M. Morayne, R. Rałowski, Sz. Żeberski (2015)

Fundamenta Mathematicae

We study and classify topologically invariant σ-ideals with an analytic base on Euclidean spaces, and evaluate the cardinal characteristics of such ideals.

Traces, lengths, axes and commensurability

Alan W. Reid (2014)

Annales de la faculté des sciences de Toulouse Mathématiques

The focus of this paper are questions related to how various geometric and analytical properties of hyperbolic 3-manifolds determine the commensurability class of such manifolds. The paper is for the large part a survey of recent work.

Currently displaying 101 – 120 of 130