Automorphic representations and Lefschetz numbers
We compute Ext-groups between classical exponential functors (i.e. symmetric, exterior or divided powers) and their Frobenius twists. Our method relies on bar constructions, and bridges these Ext-groups with the homology of Eilenberg-Mac Lane spaces.This article completes earlier results of the author, and provides an alternative approach to classical Ext-computations in the category of strict polynomial functors over fields. We also obtain significant Ext-computations for strict polynomial functors...
We prove that the natural map from bounded to usual cohomology is injective if is an irreducible cocompact lattice in a higher rank Lie group. This result holds also for nontrivial unitary coefficients, and implies finiteness results for : the stable commutator length vanishes and any –action on the circle is almost trivial. We introduce the continuous bounded cohomology of a locally compact group and prove our statements by relating to the continuous bounded cohomology of the ambient group...
We estimate the characteristic rank of the canonical –plane bundle over the oriented Grassmann manifold . We then use it to compute uniform upper bounds for the –cup-length of for belonging to certain intervals.
DI(4) is the only known example of an exotic 2-compact group, and is conjectured to be the only one. In this work, we study generalized cohomology theories for DI(4) and its classifying space. Specifically, we compute the Morava K-theories, and the P(n)-cohomology of DI(4). We use the non-commutativity of the spectrum P(n) at p=2 to prove the non-homotopy nilpotency of DI(4). Concerning the classifying space, we prove that the BP-cohomology and the Morava K-theories of BDI(4) are all concentrated...
Given a principal ideal domain of characteristic zero, containing 1/2, and a two-cone of appropriate connectedness and dimension, we present a sufficient algebraic condition, in terms of Adams-Hilton models, for the Hopf algebra to be isomorphic with the universal enveloping algebra of some -free graded Lie algebra; as usual, stands for free part, for homology, and for the Moore loop space functor.