The search session has expired. Please query the service again.
Displaying 221 –
240 of
272
The existence of global solutions and the phenomenon of blow-up of a solution in finite time for a recently derived shallow water equation are studied. We prove that the only way a classical solution could blow-up is as a breaking wave for which we determine the exact blow-up rate and, in some cases, the blow-up set. Using the correspondence between the shallow water equation and the geodesic flow on the manifold of diffeomorphisms of the line endowed with a weak Riemannian structure, we give sufficient...
Summary: We give an introduction to the Skyrme model from a mathematical point of view. Hereby, we show that it is difficult to solve the field equation even by means of the classical ansatz, the so-called hedgehog ansatz. Our main result is an extended existence proof for solutions of the field equation in the hedgehog ansatz.
The purpose of this paper is to study the existence and multiplicity of a periodic solution for the non-autonomous second-order system
By using the least action principle and the saddle point theorem, some new existence theorems are obtained for second-order -Laplacian systems with or without impulse under weak sublinear growth conditions, improving some existing results in the literature.
The existence of solutions for boundary value problems for a nonlinear discrete system involving the -Laplacian is investigated. The approach is based on critical point theory.
Let Ω be a bounded domain in Rn with n ≥ 3. In this paper we are concerned with the problem of finding u ∈ H01 (Ω) satisfying the nonlinear elliptic problemsΔu + |u|(n+2/n-2) + f(x) = 0 in Ω and u(x) = 0 on ∂Ω, andΔu + u + |u|(n+2/n-2) + f(x) = 0 in Ω and u(x) = 0 on ∂Ω, when of f ∈ L∞(Ω).
It is shown that if a manifold admits an exact symplectic form, then its Poisson Lie algebra has non trivial formal deformations and the manifold admits star-products. The non-formal derivations of the star-products and the deformations of the Poisson Lie algebra of an arbitrary symplectic manifold are studied.
Applying two three critical points theorems, we prove the existence of at least three anti-periodic solutions for a second-order impulsive differential inclusion with a perturbed nonlinearity and two parameters.
Using a three critical points theorem and variational methods, we study the existence of at least three weak solutions of the Navier problem
⎧ in Ω,
⎨
⎩u = Δu = 0 on ∂Ω,
where (N ≥ 1) is a non-empty bounded open set with a sufficiently smooth boundary ∂Ω, λ > 0, μ > 0 and f,g: Ω × ℝ → ℝ are two L¹-Carathéodory functions.
In this paper, we consider the following boundary value problem
where and is a continuous function, , are respectively the left and right fractional Riemann–Liouville derivatives and we prove the existence of at least one solution for this problem.
Currently displaying 221 –
240 of
272