Displaying 101 – 120 of 489

Showing per page

The Euler-Poincaré-Hopf theorem for flat connections in some transitive Lie algebroids

Jan Kubarski (2006)

Czechoslovak Mathematical Journal

This paper is a continuation of [19], [21], [22]. We study flat connections with isolated singularities in some transitive Lie algebroids for which either or s l ( 2 , ) or so ( 3 ) are isotropy Lie algebras. Under the assumption that the dimension of the isotropy Lie algebra is equal to n + 1 , where n is the dimension of the base manifold, we assign to any such isolated singularity a real number called an index. For -Lie algebroids, this index cannot be an integer. We prove the index theorem (the Euler-Poincaré-Hopf...

The evolution of the scalar curvature of a surface to a prescribed function

Paul Baird, Ali Fardoun, Rachid Regbaoui (2004)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We investigate the gradient flow associated to the prescribed scalar curvature problem on compact riemannian surfaces. We prove the global existence and the convergence at infinity of this flow under sufficient conditions on the prescribed function, which we suppose just continuous. In particular, this gives a uniform approach to solve the prescribed scalar curvature problem for general compact surfaces.

The existence of positive solution to some asymptotically linear elliptic equations in exterior domains.

Gongbao Li, Gao-Feng Zheng (2006)

Revista Matemática Iberoamericana

In this paper, we are concerned with the asymptotically linear elliptic problem -Δu + λ0u = f(u), u ∈ H01(Ω) in an exterior domain Ω = RnO (N ≥ 3) with O a smooth bounded and star-shaped open set, and limt→+∞ f(t)/t = l, 0 < l < +∞. Using a precise deformation lemma and algebraic topology argument, we prove under our assumptions that the problem possesses at least one positive solution.

Currently displaying 101 – 120 of 489