On forms and connections on fibre bundles
We see how the first jet bundle of curves into affine space can be realized as a homogeneous space of the Galilean group. Cartan connections with this model are precisely the geometric structure of second-order ordinary differential equations under time-preserving transformations - sometimes called KCC-theory. With certain regularity conditions, we show that any such Cartan connection induces “laboratory” coordinate systems, and the geodesic equations in this coordinates form a system of second-order...
We develop an algebraic version of Cartan’s method of equivalence or an analog of Tanaka prolongation for the (extrinsic) geometry of curves of flags of a vector space W with respect to the action of a subgroup G of GL(W). Under some natural assumptions on the subgroup G and on the flags, one can pass from the filtered objects to the corresponding graded objects and describe the construction of canonical bundles of moving frames for these curves in the language of pure linear algebra. The scope...
Let F:ℱol → ℱℳ be a product preserving bundle functor on the category ℱol of foliated manifolds (M,ℱ) without singularities and leaf respecting maps. We describe all natural operators C transforming infinitesimal automorphisms X ∈ 𝒳(M,ℱ) of foliated manifolds (M,ℱ) into vector fields C(X)∈ 𝒳(F(M,ℱ)) on F(M,ℱ).
Invariant polynomial operators on Riemannian manifolds are well understood and the knowledge of full lists of them becomes an effective tool in Riemannian geometry, [Atiyah, Bott, Patodi, 73] is a very good example. The present short paper is in fact a continuation of [Slovák, 92] where the classification problem is reconsidered under very mild assumptions and still complete classification results are derived even in some non-linear situations. Therefore, we neither repeat the detailed exposition...
We introduce the concept of an involution of iterated bundle functors. Then we study the problem of the existence of an involution for bundle functors defined on the category of fibered manifolds with m-dimensional bases and of fibered manifold morphisms covering local diffeomorphisms. We also apply our results to prolongation of connections.
We introduce exchange natural equivalences of iterated nonholonomic, holonomic and semiholonomic jet functors, depending on a classical linear connection on the base manifold. We also classify some natural transformations of this type. As an application we introduce prolongation of higher order connections to jet bundles.
We study the 2-jet bundle of mappings of the real plane into a manifold. We shall prove that there exists an imbedding of this 2-jet bundle into a suitable first order jet bundle, in such a way that its image is the set of fixed points of a canonical automorphism of the biggest jet bundle.
We prove that the problem of finding all -natural operators lifting classical linear connections ∇ on m-manifolds M to classical linear connections on the Weil bundle corresponding to a p-dimensional (over ℝ) Weil algebra A is equivalent to the one of finding all -natural operators transforming classical linear connections ∇ on m-manifolds M into base-preserving fibred maps .
We describe all F2Mm1,m2,n1,n2-natural operators D: Qτproj-prj ↝QT* transforming projectable-projectable classical torsion-free linear connections ∇ on fibred-fibred manifolds Y into classical linear connections D(∇) on cotangent bundles T*Y of Y . We show that this problem can be reduced to finding F2Mm1,m2,n1,n2-natural operators D: Qτproj-proj ↝ (T*,⊗pT*⊗⊗qT) for p = 2, q = 1 and p = 3, q = 0.
For a product preserving gauge bundle functor on vector bundles, we present some lifts of smooth functions that are constant or linear on fibers, and some lifts of projectable vector fields that are vector bundle morphisms.