Displaying 541 – 560 of 703

Showing per page

Stabilité simultanée de deux fonctions différentiables

Jean-Paul Dufour (1979)

Annales de l'institut Fourier

Nous caractérisons les couples de fonctions différentiables ( f , g ) , définies sur une variété compacte V de dimension 2 , qui sont simultanément stables en ce sens que, pour tout couple ( f ' , g ' ) assez voisin, il existe un difféomorphisme h de V et deux difféomorphismes λ et μ de R tels que h et λ échangent f et f ' alors que h et μ échangent g et g ' . L’outil essentiel est une technique de résolution des équations du type η ( x ) = X = ( x 2 + x 3 ) + ( 1 + x ) Y ( x 2 ) où les inconnues X et Y sont des fonctions de classe C .

Stochastic differential inclusions of Langevin type on Riemannian manifolds

Yuri E. Gliklikh, Andrei V. Obukhovskiĭ (2001)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

We introduce and investigate a set-valued analogue of classical Langevin equation on a Riemannian manifold that may arise as a description of some physical processes (e.g., the motion of the physical Brownian particle) on non-linear configuration space under discontinuous forces or forces with control. Several existence theorems are proved.

Stratifications of polynomial spaces

Lev Birbrair (1998)

Publicacions Matemàtiques

In the paper we construct some stratifications of the space of monic polynomials in real and complex cases. These stratifications depend on properties of roots of the polynomials on some given semialgebraic subset of R or C. We prove differential triviality of these stratifications. In the real case the proof is based on properties of the action of the group of interval exchange transformations on the set of all monic polynomials of some given degree. Finally we compare stratifications corresponding...

Strong density for higher order Sobolev spaces into compact manifolds

Pierre Bousquet, Augusto C. Ponce, Jean Van Schaftingen (2015)

Journal of the European Mathematical Society

Given a compact manifold N n , an integer k * and an exponent 1 p < , we prove that the class C ( Q ¯ m ; N n ) of smooth maps on the cube with values into N n is dense with respect to the strong topology in the Sobolev space W k , p ( Q m ; N n ) when the homotopy group π k p ( N n ) of order k p is trivial. We also prove density of maps that are smooth except for a set of dimension m - k p - 1 , without any restriction on the homotopy group of N n .

Subdifferentials of Performance Functions and Calculus of Coderivatives of Set-Valued Mappings

Ioffe, Alexander, Penot, Jean-Paul (1996)

Serdica Mathematical Journal

The paper contains calculus rules for coderivatives of compositions, sums and intersections of set-valued mappings. The types of coderivatives considered correspond to Dini-Hadamard and limiting Dini-Hadamard subdifferentials in Gˆateaux differentiable spaces, Fréchet and limiting Fréchet subdifferentials in Asplund spaces and approximate subdifferentials in arbitrary Banach spaces. The key element of the unified approach to obtaining various calculus rules for various types of derivatives presented...

Currently displaying 541 – 560 of 703