Stabilité des applications différentiables
Nous caractérisons les couples de fonctions différentiables , définies sur une variété compacte de dimension , qui sont simultanément stables en ce sens que, pour tout couple assez voisin, il existe un difféomorphisme de et deux difféomorphismes et de tels que et échangent et alors que et échangent et . L’outil essentiel est une technique de résolution des équations du type où les inconnues et sont des fonctions de classe .
We introduce and investigate a set-valued analogue of classical Langevin equation on a Riemannian manifold that may arise as a description of some physical processes (e.g., the motion of the physical Brownian particle) on non-linear configuration space under discontinuous forces or forces with control. Several existence theorems are proved.
In the paper we construct some stratifications of the space of monic polynomials in real and complex cases. These stratifications depend on properties of roots of the polynomials on some given semialgebraic subset of R or C. We prove differential triviality of these stratifications. In the real case the proof is based on properties of the action of the group of interval exchange transformations on the set of all monic polynomials of some given degree. Finally we compare stratifications corresponding...
Given a compact manifold , an integer and an exponent , we prove that the class of smooth maps on the cube with values into is dense with respect to the strong topology in the Sobolev space when the homotopy group of order is trivial. We also prove density of maps that are smooth except for a set of dimension , without any restriction on the homotopy group of .
The paper contains calculus rules for coderivatives of compositions, sums and intersections of set-valued mappings. The types of coderivatives considered correspond to Dini-Hadamard and limiting Dini-Hadamard subdifferentials in Gˆateaux differentiable spaces, Fréchet and limiting Fréchet subdifferentials in Asplund spaces and approximate subdifferentials in arbitrary Banach spaces. The key element of the unified approach to obtaining various calculus rules for various types of derivatives presented...