Weierstrass-type representation of weakly regular pseudospherical surfaces in Euclidean space.
In this paper we show that the Euler equation for incompressible fluids in R2 is well posed in the (vector-valued) Lebesgue spacesLsp = (1 - ∆)-s/2 Lp(R2) with s > 1 + 2/p, 1 < p < ∞and that the same is true of the Navier-Stokes equation uniformly in the viscosity ν.
We prove that Witten’s Conjecture [40] on the relationship between the Donaldson and Seiberg-Witten series for a four-manifold of Seiberg-Witten simple type with and odd follows from our -monopole cobordism formula [6] when the four-manifold has or is abundant.