Deformation of Submanifolds of Strongly Negatively Curved Manifolds.
The homotopy fiber of the inclusion from the long embedding space to the long immersion space is known to be an iterated based loop space (if the codimension is greater than two). In this paper we deloop the homotopy fiber to obtain the topological Stiefel manifold, combining results of Lashof and of Lees. We also give a delooping of the long embedding space, which can be regarded as a version of Morlet-Burghelea-Lashof's delooping of the diffeomorphism group of the disk relative to the boundary....
Given a compact manifold and real numbers and , we prove that the class of smooth maps on the cube with values into is strongly dense in the fractional Sobolev space when is simply connected. For integer, we prove weak sequential density of when is simply connected. The proofs are based on the existence of a retraction of onto except for a small subset of and on a pointwise estimate of fractional derivatives of composition of maps in .
Groping our way toward a theory of singular spaces with positive scalar curvatures we look at the Dirac operator and a generalized Plateau problem in Riemannian manifolds with corners. Using these, we prove that the set of C 2-smooth Riemannian metrics g on a smooth manifold X, such that scalg(x) ≥ κ(x), is closed under C 0-limits of Riemannian metrics for all continuous functions κ on X. Apart from that our progress is limited but we formulate many conjectures. All along, we emphasize geometry,...