Ein Homotopieerweiterungssatz für kompakte Vektorfelder in topologischen Vektorräumen (Vorläufige Mitteilung)
A lower estimate is proved for the number of critical orbits and critical values of a G-invariant C¹ function , where G is a finite nontrivial group acting freely and orthogonally on . Neither Morse theory nor the minimax method is applied. The proofs are based on a general version of Borsuk’s Antipodal Theorem for equivariant maps of joins of G-sets.
Cet article contient une démonstration géométrique simple de pour .Ce résultat (démontré aussi par Mather comme corollaire d’un théorème beaucoup plus général) apparaît comme une conséquence du théorème de Michael Herman : .L’appendice contient une étude des structures sur les surfaces et un résultat sur la cohomologie de .
We consider evolution differential equations in Fréchet spaces with unconditional Schauder basis, and construct a version of the majorant functions method to obtain existence theorems for Cauchy problems. Applications to PDE are also considered.
The existence of global solutions and the phenomenon of blow-up of a solution in finite time for a recently derived shallow water equation are studied. We prove that the only way a classical solution could blow-up is as a breaking wave for which we determine the exact blow-up rate and, in some cases, the blow-up set. Using the correspondence between the shallow water equation and the geodesic flow on the manifold of diffeomorphisms of the line endowed with a weak Riemannian structure, we give sufficient...