Page 1 Next

Displaying 1 – 20 of 31

Showing per page

Calculus of flows on convenient manifolds

Andrzej Zajtz (1996)

Archivum Mathematicum

The study of diffeomorphism group actions requires methods of infinite dimensional analysis. Really convenient tools can be found in the Frölicher - Kriegl - Michor differentiation theory and its geometrical aspects. In terms of it we develop the calculus of various types of one parameter diffeomorphism groups in infinite dimensional spaces with smooth structure. Some spectral properties of the derivative of exponential mapping for manifolds are given.

Classification analytique de structures de Poisson

Philipp Lohrmann (2009)

Bulletin de la Société Mathématique de France

Notre étude porte sur une catégorie de structures de Poisson singulières holomorphes au voisinage de 0 n et admettant une forme normale formelle polynomiale i.e. un nombre fini d’invariants formels. Les séries normalisantes sont divergentes en général. On montre l’existence de transformations normalisantes holomorphes sur des domaines sectoriels de la forme a < arg x R < b , où x R est un monôme associé au problème. Il suit une classification analytique.

Closed surfaces with different shapes that are indistinguishable by the SRNF

Eric Klassen, Peter W. Michor (2020)

Archivum Mathematicum

The Square Root Normal Field (SRNF), introduced by Jermyn et al. in [5], provides a way of representing immersed surfaces in 3 , and equipping the set of these immersions with a “distance function" (to be precise, a pseudometric) that is easy to compute. Importantly, this distance function is invariant under reparametrizations (i.e., under self-diffeomorphisms of the domain surface) and under rigid motions of 3 . Thus, it induces a distance function on the shape space of immersions, i.e., the space...

Commutators of diffeomorphisms of a manifold with boundary

Tomasz Rybicki (1998)

Annales Polonici Mathematici

A well known theorem of Herman-Thurston states that the identity component of the group of diffeomorphisms of a boundaryless manifold is perfect and simple. We generalize this result to manifolds with boundary. Remarks on C r -diffeomorphisms are included.

Currently displaying 1 – 20 of 31

Page 1 Next