Induced trajectories and approximate inertial manifolds
In this paper we prove the existence of solutions of a degenerate complex Monge-Ampére equation on a complex manifold. Applying our existence result to a special degeneration of complex structure, we show how to associate to a change of complex structure an infinite length geodetic ray in the space of potentials. We also prove an existence result for the initial value problem for geodesics. We end this paper with a discussion of a list of open problems indicating how to relate our reults to the...
We study deformations of compact Riemannian manifolds of negative curvature. We give an equation for the infinitesimal conjugacy between geodesic flows. This in turn allows us to compute derivatives of intersection of metrics. As a consequence we obtain a proof of a theorem of Wolpert.
On démontre qu’il ne peut exister de système complet d’invariants analytiques pour l’action du groupe des germes des difféomorphismes sur les champs de vecteurs pour un champ dont la forme normale a un champ réduit associé nul.
We show that the generating function for the higher Weil–Petersson volumes of the moduli spaces of stable curves with marked points can be obtained from Witten’s free energy by a change of variables given by Schur polynomials. Since this generating function has a natural extension to the moduli space of invertible Cohomological Field Theories, this suggests the existence of a “very large phase space”, correlation functions on which include Hodge integrals studied by C. Faber and R. Pandharipande....
The Ito equation is shown to be a geodesic flow of metric on the semidirect product space , where is the group of orientation preserving Sobolev diffeomorphisms of the circle. We also study a geodesic flow of a metric.