-transitivity of certain diffeomorphism groups.
We define natural first order Lagrangians for immersions of Riemannian manifolds and we prove a bijective correspondence between such Lagrangians and the symmetric functions on an open subset of m-dimensional Euclidean space.
Une classification complète des stabilisateurs coadjoints du groupe de Bott-Virasoro est obtenue par une méthode essentiellement géométrique. L’outil de base est le nombre de rotation d’un difféomorphisme du cercle. En particulier, nous mettons en évidence la présence de groupes d’isotropie non-connexes et montrons que la transformation de Miura des opérateurs de Hill peut s’interpréter comme une application moment sur l’espace des structures affines du cercle.
Using non-Archimedian integration over spaces of arcs of algebraic varieties, we define stringy Euler numbers associated with arbitrary Kawamata log-terminal pairs. There is a natural Kawamata log-terminal pair corresponding to an algebraic variety having a regular action of a finite group . In this situation we show that the stringy Euler number of this pair coincides with the physicists’ orbifold Euler number defined by the Dixon-Harvey-Vafa-Witten formula. As an application, we prove a conjecture...
In this paper we deal with the Cauchy problem for differential inclusions governed by -accretive operators in general Banach spaces. We are interested in finding the sufficient conditions for the existence of integral solutions of the problem , , where is an -accretive operator, and is a continuous, but non-compact perturbation, satisfying some additional conditions.
We introduce the notion of nonuniform center bunching for partially hyperbolic diffeomorphims, and extend previous results by Burns–Wilkinson and Avila–Santamaria–Viana. Combining this new technique with other constructions we prove that -generic partially hyperbolic symplectomorphisms are ergodic. We also construct new examples of stably ergodic partially hyperbolic diffeomorphisms.
normal forms are given for singularities of vectorfields on , which are not flat, and for vectorfields on with , the 1-jet of in the origin is a pure rotation, and some higher order jet of attracting or expanding.