Some remarks on the boundary regularity for minima of variational problems with obstacles.
We present critical groups estimates for a functional defined on the Banach space , bounded domain in , , associated to a quasilinear elliptic equation involving -laplacian. In spite of the lack of an Hilbert structure and of Fredholm property of the second order differential of in each critical point, we compute the critical groups of in each isolated critical point via Morse index.
This paper uses minimization methods and renormalized functionals to find spatially heteroclinic solutions for some classes of semilinear elliptic partial differential equations
This paper uses minimization methods and renormalized functionals to find spatially heteroclinic solutions for some classes of semilinear elliptic partial differential equations
∗Partially supported by Grant MM 409/94 of the Mininstry of Education, Science and Technology, Bulgaria. ∗∗Partially supported by Grants MM 521/95, MM 442/94 of the Mininstry of Education, Science and Technology, Bulgaria.The definition of the weak slope of continuous functions introduced by Degiovanni and Marzocchi (cf. [8]) and its interrelation with the notion “steepness” of locally Lipschitz functions are discussed. A deformation lemma and a mountain pass theorem for usco mappings are proved....
In this paper, we define an -Yang-Mills functional, and hence -Yang-Mills fields. The first and the second variational formulas are calculated, and the stabilities of -Yang-Mills fields on some submanifolds of the Euclidean spaces and the spheres are investigated, and hence the theories of Yang-Mills fields are generalized in this paper.