convergence of minimizers of a Ginzburg-Landau functional.
In this article, we extend Caristi's fixed point theorem, Ekeland's variational principle and Takahashi's maximization theorem to fuzzy metric spaces in the sense of George and Veeramani [A. George , P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems. 64 (1994) 395-399]. Further, a direct simple proof of the equivalences among these theorems is provided.
In this work, we define a partial order on probabilistic metric spaces and establish some new Caristi's fixed point theorems and Ekeland's variational principle for the class of (right) continuous and Archimedean t-norms. As an application, a partial answer to Kirk's problem in metric spaces is given.
Partially supported by Sapientia Foundation.We prove a general minimax result for multivalued mapping. As application, we give existence results of critical point of this mapping which satisfies the Cerami (C) condition.
Nous démontrons des inégalités de Morse-Witten asymptotiques pour la dimension des groupes de cohomologie des puissances tensorielles d’un fibré holomorphe en droites hermitien au-dessus d’une variété - analytique compacte. La dimension du -ième groupe de cohomologie se trouve ainsi majorée par une intégrale de courbure intrinsèque, étendue à l’ensemble des points d’indice de la forme de courbure du fibré. La preuve repose sur un théorème spectral qui décrit la distribution asymptotique des...
We study the topology of foliations of close cohomologous Morse forms (smooth closed 1-forms with non-degenerate singularities) on a smooth closed oriented manifold. We show that if a closed form has a compact leave , then any close cohomologous form has a compact leave close to . Then we prove that the set of Morse forms with compactifiable foliations (foliations with no locally dense leaves) is open in a cohomology class, and the number of homologically independent compact leaves does not decrease...