De nouvelles formules de Weitzenböck pour des endomorphismes harmoniques. Applications géométriques
∗Partially supported by Grant MM409/94 Of the Ministy of Science and Education, Bulgaria. ∗∗Partially supported by Grant MM442/94 of the Ministy of Science and Education, Bulgaria.Let M be a complete C1−Finsler manifold without boundary and f : M → R be a locally Lipschitz function. The classical proof of the well known deformation lemma can not be extended in this case because integral lines may not exist. In this paper we establish existence of deformations generalizing the classical result. This...
We construct biharmonic non-harmonic maps between Riemannian manifolds and by first making the ansatz that be a harmonic map and then deforming the metric on by to render biharmonic, where is a smooth function with gradient of constant norm on and . We construct new examples of biharmonic non-harmonic maps, and we characterize the biharmonicity of some curves on Riemannian manifolds.
We prove a universal inequality between the diastole, defined using a minimax process on the one-cycle space, and the area of closed Riemannian surfaces. Roughly speaking, we show that any closed Riemannian surface can be swept out by a family of multi-loops whose lengths are bounded in terms of the area of the surface. This diastolic inequality, which relies on an upper bound on Cheeger’s constant, yields an effective process to find short closed geodesics on the two-sphere, for instance. We deduce...