O 19. a 20. Hilbertově problému
We study the boundary value problem in , on , where is a smooth bounded domain in . Our attention is focused on two cases when , where for any or for any . In the former case we show the existence of infinitely many weak solutions for any . In the latter we prove that if is large enough then there exists a nontrivial weak solution. Our approach relies on the variable exponent theory of generalized Lebesgue-Sobolev spaces, combined with a -symmetric version for even functionals...
Let be a bounded starshaped domain and consider the -Laplacian problem where is a positive parameter, , and is the critical Sobolev exponent. In this short note we address the question of non-existence for non-trivial solutions to the -Laplacian problem. In particular we show the non-existence of non-trivial solutions to the problem by using a method based on Pohozaev identity.
Helmholtz conditions in the calculus of variations are necessary and sufficient conditions for a system of differential equations to be variational ‘as it stands’. It is known that this property geometrically means that the dynamical form representing the equations can be completed to a closed form. We study an analogous property for differential forms of degree 3, so-called Helmholtz-type forms in mechanics (), and obtain a generalization of Helmholtz conditions to this case.
In this paper we mainly introduce a min-max procedure to prove the existence of positive solutions for certain semilinear elliptic equations in RN.
In this Note, by using a generalization of the classical Fermat principle, we prove the existence and multiplicity of lightlike geodesics joining a point with a timelike curve on a class of Lorentzian manifolds, satisfying a suitable compactness assumption, which is weaker than the globally hyperbolicity.
We consider the parabolic equation (P) , (t,x) ∈ ℝ₊ × ℝⁿ, and the corresponding semiflow π in the phase space H¹. We give conditions on the nonlinearity F(x,u), ensuring that all bounded sets of H¹ are π-admissible in the sense of Rybakowski. If F(x,u) is asymptotically linear, under appropriate non-resonance conditions, we use Conley’s index theory to prove the existence of nontrivial equilibria of (P) and of heteroclinic trajectories joining some of these equilibria. The results obtained extend...
We present some results concerning the problem , in , , where , , and is a smooth bounded domain containing the origin. In particular, bifurcation and uniqueness results are discussed.