Recent existence and regularity results for wave maps
We describe the recent joint work of the author with David M. J. Calderbank and Paul Gauduchon on refined Kato inequalities for sections of vector bundles living in the kernel of natural first-order elliptic operators.
We prove the hypoellipticity for systems of Hörmander type with constant coefficients in Carnot groups of step 2. This result is used to implement blow-up methods and prove partial regularity for local minimizers of non-convex functionals, and for solutions of non-linear systems which appear in the study of non-isotropic metric structures with scalings. We also establish estimates of the Hausdorff dimension of the singular set.
We study a form of optimal transportation surplus functions which arise in hedonic pricing models. We derive a formula for the Ma–Trudinger–Wang curvature of these functions, yielding necessary and sufficient conditions for them to satisfy (A3w). We use this to give explicit new examples of surplus functions satisfying (A3w), of the form b(x,y) = H(x + y) where H is a convex function on ℝn. We also show that the distribution of equilibrium contracts in this hedonic pricing model is absolutely continuous...