Displaying 1041 – 1060 of 1170

Showing per page

The rectifiable distance in the unitary Fredholm group

Esteban Andruchow, Gabriel Larotonda (2010)

Studia Mathematica

Let U c ( ) = u: u unitary and u-1 compact stand for the unitary Fredholm group. We prove the following convexity result. Denote by d the rectifiable distance induced by the Finsler metric given by the operator norm in U c ( ) . If u , u , u U c ( ) and the geodesic β joining u₀ and u₁ in U c ( ) satisfy d ( u , β ) < π / 2 , then the map f ( s ) = d ( u , β ( s ) ) is convex for s ∈ [0,1]. In particular, the convexity radius of the geodesic balls in U c ( ) is π/4. The same convexity property holds in the p-Schatten unitary groups U p ( ) = u: u unitary and u-1 in the p-Schatten class...

The role of Onofri type inequalities in the symmetry properties of extremals for Caffarelli-Kohn-Nirenberg inequalities, in two space dimensions

Jean Dolbeault, Maria J. Esteban, Gabriella Tarantello (2008)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We first discuss a class of inequalities of Onofri type depending on a parameter, in the two-dimensional Euclidean space. The inequality holds for radial functions if the parameter is larger than - 1 . Without symmetry assumption, it holds if and only if the parameter is in the interval ( - 1 , 0 ] . The inequality gives us some insight on the symmetry breaking phenomenon for the extremal functions of the Caffarelli-Kohn-Nirenberg inequality, in two space dimensions. In fact, for suitable sets of parameters (asymptotically...

The singularity structureοf the Yang-Mills configuration space

Jürgen Fuchs (1997)

Banach Center Publications

The geometric description of Yang–Mills theories and their configuration space is reviewed. The presence of singularities in M is explained and some of their properties are described. The singularity structure is analysed in detail for structure group SU(2). This review is based on [28].

Currently displaying 1041 – 1060 of 1170