A -theory for the blow-up of second order elliptic equations of critical Sobolev growth.
For , let be a bounded smooth domain and a compact smooth Riemannian manifold without boundary. Suppose that is a sequence of weak solutions in the critical dimension to the perturbed -polyharmonic maps with in and weakly in . Then is an -polyharmonic map. In particular, the space of -polyharmonic maps is sequentially compact for the weak- topology.
In this paper we consider Riemannian manifolds of dimension , with semi-positive -curvature and non-negative scalar curvature. Under these assumptions we prove (i) the Paneitz operator satisfies a strong maximum principle; (ii) the Paneitz operator is a positive operator; and (iii) its Green’s function is strictly positive. We then introduce a non-local flow whose stationary points are metrics of constant positive -curvature. Modifying the test function construction of Esposito-Robert, we show...
In this paper, we consider elliptic differential operators on compact manifolds with a random perturbation in the 0th order term and show under fairly weak additional assumptions that the large eigenvalues almost surely distribute according to the Weyl law, well-known in the self-adjoint case.
Spaces with corner singularities, locally modelled by cones with base spaces having conical singularities, belong to the hierarchy of (pseudo-) manifolds with piecewise smooth geometry. We consider a typical case of a manifold with corners, the so-called "edged spindle", and a natural algebra of pseudodifferential operators on it with special degeneracy in the symbols, the "corner algebra". There are three levels of principal symbols in the corner algebra, namely the interior,...