Oddness of least energy nodal solutions on radial domains.
We extend a result of the second author [27, Theorem 1.1] to dimensions which relates the size of -norms of eigenfunctions for to the amount of -mass in shrinking tubes about unit-length geodesics. The proof uses bilinear oscillatory integral estimates of Lee [22] and a variable coefficient variant of an " removal lemma" of Tao and Vargas [35]. We also use Hörmander’s [20] oscillatory integral theorem and the Cartan–Hadamard theorem to show that, under the assumption of nonpositive curvature,...
Let be a compact Riemannian manifold and an elliptic, formally self-adjoint, conformally covariant operator of order acting on smooth sections of a bundle over . We prove that if has no rigid eigenspaces (see Definition 2.2), the set of functions for which has only simple non-zero eigenvalues is a residual set in . As a consequence we prove that if has no rigid eigenspaces for a dense set of metrics, then all non-zero eigenvalues are simple for a residual set of metrics in the -topology....
We show that, if a certain Sobolev inequality holds, then a scale-invariant elliptic Harnack inequality suffices to imply its a priori stronger parabolic counterpart. Neither the relative Sobolev inequality nor the elliptic Harnack inequality alone suffices to imply the parabolic Harnack inequality in question; both are necessary conditions. As an application, we show the equivalence between parabolic Harnack inequality for on , (i.e., for ) and elliptic Harnack inequality for on .