Conformal Dirichlet-Neumann maps and Poincaré-Einstein manifolds.
In this paper we consider a smooth and bounded domain of dimension with boundary and we construct sequences of solutions to the wave equation with Dirichlet boundary condition which contradict the Strichartz estimates of the free space, providing losses of derivatives at least for a subset of the usual range of indices. This is due to microlocal phenomena such as caustics generated in arbitrarily small time near the boundary. Moreover, the result holds for microlocally strictly convex domains...
On présente ici une approche directe et géométrique pour le calcul des déterminants d’opérateurs de type Schrödinger sur un graphe fini. Du calcul de l’intégrale de Fresnel associée, on déduit le déterminant. Le calcul des intégrales de Fresnel est grandement facilité par l’utilisation simultanée du théorème de Fubini et d’une version linéaire du calcul symbolique des opérateurs intégraux de Fourier. On obtient de façon directe une formule générale exprimant le déterminant en terme des conditions...
This is the second of a series of papers in which we investigate the problem of finding, in hyperbolic space, complete hypersurfaces of constant curvature with a prescribed asymptotic boundary at infinity for a general class of curvature functions. In this paper we focus on graphs over a domain with nonnegative mean curvature.
We consider the norm closure 𝔄 of the algebra of all operators of order and class zero in Boutet de Monvel's calculus on a compact manifold X with boundary ∂X. Assuming that all connected components of X have nonempty boundary, we show that K₁(𝔄) ≃ K₁(C(X)) ⊕ ker χ, where χ: K₀(C₀(T*Ẋ)) → ℤ is the topological index, T*Ẋ denoting the cotangent bundle of the interior. Also K₀(𝔄) is topologically determined. In case ∂X has torsion free K-theory, we get K₀(𝔄) ≃ K₀(C(X)) ⊕ K₁(C₀(T*Ẋ)).
Let , let be a hypersurface of , be a submanifold of . Denote by the Levi form of at . In a previous paper [3] two numbers , are defined; for they are the numbers of positive and negative eigenvalues for . For , , we show here that are still the numbers of positive and negative eigenvalues for when restricted to . Applications to the concentration in degree for microfunctions at the boundary are given.