Local audibility of a hyperbolic metric.
Let be a long range metric perturbation of the Euclidean Laplacian on , . We prove local energy decay for the solutions of the wave, Klein-Gordon and Schrödinger equations associated to . The problem is decomposed in a low and high frequency analysis. For the high energy part, we assume a non trapping condition. For low (resp. high) frequencies we obtain a general result about the local energy decay for the group where has a suitable development at zero (resp. infinity).