Page 1 Next

Displaying 1 – 20 of 65

Showing per page

Marcinkiewicz spaces, commutators and non-commutative geometry

(2011)

Banach Center Publications

Nigel J. Kalton was one of the most eminent guests participating in the Józef Marcinkiewicz Centenary Conference. His contribution to the scientific aspect of the meeting was very essential. Nigel was going to prepare a paper based on his plenary lecture. The editors are completely sure that the paper would be a real ornament of the Proceedings. Unfortunately, Nigel's sudden death totally destroyed editors' hopes and plans. Every mathematician knows how unique were Nigel's mathematical achievements....

Mass endomorphism, surgery and perturbations

Bernd Ammann, Mattias Dahl, Andreas Hermann, Emmanuel Humbert (2014)

Annales de l’institut Fourier

We prove that the mass endomorphism associated to the Dirac operator on a Riemannian manifold is non-zero for generic Riemannian metrics. The proof involves a study of the mass endomorphism under surgery, its behavior near metrics with harmonic spinors, and analytic perturbation arguments.

Maximal functions related to subelliptic operators invariant under an action of a solvable Lie group

Ewa Damek, Andrzej Hulanicki (1991)

Studia Mathematica

On the domain S_a = {(x,e^b): x ∈ N, b ∈ ℝ, b > a} where N is a simply connected nilpotent Lie group, a certain N-left-invariant, second order, degenerate elliptic operator L is considered. N × {e^a} is the Poisson boundary for L-harmonic functions F, i.e. F is the Poisson integral F(xe^b) = ʃ_N f(xy)dμ^b_a(x), for an f in L^∞(N). The main theorem of the paper asserts that the maximal function M^a f(x) = sup{|ʃf(xy)dμ_a^b(y)| : b > a} is of weak type (1,1).

Maximally degenerate laplacians

Steven Zelditch (1996)

Annales de l'institut Fourier

The Laplacian Δ g of a compact Riemannian manifold ( M , g ) is called maximally degenerate if its eigenvalue multiplicity function m g ( k ) is of maximal growth among metrics of the same dimension and volume. Canonical spheres ( S n , can ) and CROSSes are MD, and one asks if they are the only examples. We show that a MD metric must be at least a Zoll metric with just one distinct eigenvalue in each cluster, and hence with all band invariants equal to zero. The principal band invariant is then calculated in terms of geodesic...

Currently displaying 1 – 20 of 65

Page 1 Next