Displaying 2521 – 2540 of 10055

Showing per page

Dynamic programming for an investment/consumption problem in illiquid markets with regime-switching

Paul Gassiat, Fausto Gozzi, Huyên Pham (2015)

Banach Center Publications

We consider an illiquid financial market with different regimes modeled by a continuous time finite-state Markov chain. The investor can trade a stock only at the discrete arrival times of a Cox process with intensity depending on the market regime. Moreover, the risky asset price is subject to liquidity shocks, which change its rate of return and volatility, and induce jumps on its dynamics. In this setting, we study the problem of an economic agent optimizing her expected utility from consumption...

Dynamic Programming for the stochastic Navier-Stokes equations

Giuseppe da Prato, Arnaud Debussche (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We solve an optimal cost problem for a stochastic Navier-Stokes equation in space dimension 2 by proving existence and uniqueness of a smooth solution of the corresponding Hamilton-Jacobi-Bellman equation.

Dynamic programming principle for stochastic recursive optimal control problem with delayed systems

Li Chen, Zhen Wu (2012)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we study one kind of stochastic recursive optimal control problem for the systems described by stochastic differential equations with delay (SDDE). In our framework, not only the dynamics of the systems but also the recursive utility depend on the past path segment of the state process in a general form. We give the dynamic programming principle for this kind of optimal control problems and show that the value function is the viscosity solution of the corresponding infinite dimensional...

Dynamic term structure modelling with default and mortality risk: new results on existence and monotonicity

Thorsten Schmidt, Stefan Tappe (2015)

Banach Center Publications

This paper considers dynamic term structure models like the ones appearing in portfolio credit risk modelling or life insurance. We study general forward rate curves driven by infinitely many Brownian motions and an integer-valued random measure, generalizing existing approaches in the literature. A precise characterization of absence of arbitrage in such markets is given in terms of a suitable criterion for no asymptotic free lunch (NAFL). From this, we obtain drift conditions which are equivalent...

Dynamical attraction to stable processes

Albert M. Fisher, Marina Talet (2012)

Annales de l'I.H.P. Probabilités et statistiques

We apply dynamical ideas within probability theory, proving an almost-sure invariance principle in log density for stable processes. The familiar scaling property (self-similarity) of the stable process has a stronger expression, that the scaling flow on Skorokhod path space is a Bernoulli flow. We prove that typical paths of a random walk with i.i.d. increments in the domain of attraction of a stable law can be paired with paths of a stable process so that, after applying a non-random regularly...

Dynamical Percolation

Olle Häggström, Yuval Peres, Jeffrey E. Steif (1997)

Annales de l'I.H.P. Probabilités et statistiques

Dynamical sensitivity of the infinite cluster in critical percolation

Yuval Peres, Oded Schramm, Jeffrey E. Steif (2009)

Annales de l'I.H.P. Probabilités et statistiques

In dynamical percolation, the status of every bond is refreshed according to an independent Poisson clock. For graphs which do not percolate at criticality, the dynamical sensitivity of this property was analyzed extensively in the last decade. Here we focus on graphs which percolate at criticality, and investigate the dynamical sensitivity of the infinite cluster. We first give two examples of bounded degree graphs, one which percolates for all times at criticality and one which has exceptional...

Dynamics and density evolution in piecewise deterministic growth processes

Michael C. Mackey, Marta Tyran-Kamińska (2008)

Annales Polonici Mathematici

A new sufficient condition is proved for the existence of stochastic semigroups generated by the sum of two unbounded operators. It is applied to one-dimensional piecewise deterministic Markov processes, where we also discuss the existence of a unique stationary density and give sufficient conditions for asymptotic stability.

Dynamics of Stochastic Neuronal Networks and the Connections to Random Graph Theory

R. E. Lee DeVille, C. S. Peskin, J. H. Spencer (2010)

Mathematical Modelling of Natural Phenomena

We analyze a stochastic neuronal network model which corresponds to an all-to-all network of discretized integrate-and-fire neurons where the synapses are failure-prone. This network exhibits different phases of behavior corresponding to synchrony and asynchrony, and we show that this is due to the limiting mean-field system possessing multiple attractors. We also show that this mean-field limit exhibits a first-order phase transition as a function...

Dynamiques recuites de type Feynman-Kac : résultats précis et conjectures

Pierre Del Moral, Laurent Miclo (2006)

ESAIM: Probability and Statistics

Soit U une fonction définie sur un ensemble fini E muni d'un noyau markovien irréductible M. L'objectif du papier est de comparer théoriquement deux procédures stochastiques de minimisation globale de U : le recuit simulé et un algorithme génétique. Pour ceci on se placera dans la situation idéalisée d'une infinité de particules disponibles et nous ferons une hypothèse commode d'existence de suffisamment de symétries du cadre (E,M,U). On verra notamment que contrairement au recuit simulé, toute...

Currently displaying 2521 – 2540 of 10055