Displaying 61 – 80 of 85

Showing per page

When is a Riesz distribution a complex measure?

Alan D. Sokal (2011)

Bulletin de la Société Mathématique de France

Let α be the Riesz distribution on a simple Euclidean Jordan algebra, parametrized by α . I give an elementary proof of the necessary and sufficient condition for α to be a locally finite complex measure (= complex Radon measure).

Where does randomness lead in spacetime?

Ismael Bailleul, Albert Raugi (2010)

ESAIM: Probability and Statistics

We provide an alternative algebraic and geometric approach to the results of [I. Bailleul, Probab. Theory Related Fields141 (2008) 283–329] describing the asymptotic behaviour of the relativistic diffusion.

Why Jordan algebras are natural in statistics: quadratic regression implies Wishart distributions

G. Letac, J. Wesołowski (2011)

Bulletin de la Société Mathématique de France

If the space 𝒬 of quadratic forms in n is splitted in a direct sum 𝒬 1 ... 𝒬 k and if X and Y are independent random variables of n , assume that there exist a real number a such that E ( X | X + Y ) = a ( X + Y ) and real distinct numbers b 1 , . . . , b k such that E ( q ( X ) | X + Y ) = b i q ( X + Y ) for any q in 𝒬 i . We prove that this happens only when k = 2 , when n can be structured in a Euclidean Jordan algebra and when X and Y have Wishart distributions corresponding to this structure.

Why the Kemeny Time is a constant

Karl Gustafson, Jeffrey J. Hunter (2016)

Special Matrices

We present a new fundamental intuition forwhy the Kemeny feature of a Markov chain is a constant. This new perspective has interesting further implications.

Why λ -additive (fuzzy) measures?

Ion Chiţescu (2015)

Kybernetika

The paper is concerned with generalized (i. e. monotone and possibly non-additive) measures. A discussion concerning the classification of these measures, according to the type and amount of non-additivity, is done. It is proved that λ -additive measures appear naturally as solutions of functional equations generated by the idea of (possible) non additivity.

Wiener integral for the coordinate process under the σ-finite measure unifying Brownian penalisations

Kouji Yano (2011)

ESAIM: Probability and Statistics

Wiener integral for the coordinate process is defined under the σ-finite measure unifying Brownian penalisations, which has been introduced by [Najnudel et al., C. R. Math. Acad. Sci. Paris345 (2007) 459–466] and [Najnudel et al., MSJ Memoirs19. Mathematical Society of Japan, Tokyo (2009)]. Its decomposition before and after last exit time from 0 is studied. This study prepares for the author's recent study [K. Yano, J. Funct. Anal.258 (2010) 3492–3516] of Cameron-Martin formula for the...

Wiener integral for the coordinate process under the σ-finite measure unifying brownian penalisations

Kouji Yano (2011)

ESAIM: Probability and Statistics

Wiener integral for the coordinate process is defined under the σ-finite measure unifying Brownian penalisations, which has been introduced by [Najnudel et al., C. R. Math. Acad. Sci. Paris 345 (2007) 459–466] and [Najnudel et al., MSJ Memoirs 19. Mathematical Society of Japan, Tokyo (2009)]. Its decomposition before and after last exit time from 0 is studied. This study prepares for the author's recent study [K. Yano, J. Funct. Anal. 258 (2010) 3492–3516] of Cameron-Martin formula for the σ-finite...

Currently displaying 61 – 80 of 85