Displaying 281 – 300 of 425

Showing per page

Poverty measures and poverty orderings.

Miguel A. Sordo, Héctor M. Ramos, Carmen D. Ramosm (2007)

SORT

We examine the conditions under which unanimous poverty rankings of income distributions can be obtained for a general class of poverty indices. The "per-capita income gap" and the Shorrocks and Thon poverty measures are particular members of this class. The conditions of dominance are stated in terms of comparisons of the corresponding TIP curves and areas.

Preservation of log-concavity on summation

Oliver Johnson, Christina Goldschmidt (2006)

ESAIM: Probability and Statistics

We extend Hoggar's theorem that the sum of two independent discrete-valued log-concave random variables is itself log-concave. We introduce conditions under which the result still holds for dependent variables. We argue that these conditions are natural by giving some applications. Firstly, we use our main theorem to give simple proofs of the log-concavity of the Stirling numbers of the second kind and of the Eulerian numbers. Secondly, we prove results concerning the log-concavity of the sum of...

Quand est-ce que des bornes de Hardy permettent de calculer une constante de Poincaré exacte sur la droite ?

Laurent Miclo (2008)

Annales de la faculté des sciences de Toulouse Mathématiques

Classically, Hardy’s inequality enables to estimate the spectral gap of a one-dimensional diffusion up to a factor belonging to [ 1 , 4 ] . The goal of this paper is to better understand the latter factor, at least in a symmetric setting. In particular, we will give an asymptotical criterion implying that its value is exactly 4. The underlying argument is based on a semi-explicit functional for the spectral gap, which is monotone in some rearrangement of the data. To find it will resort to some regularity...

Quantile of a Mixture with Application to Model Risk Assessment

Carole Bernard, Steven Vanduffel (2015)

Dependence Modeling

We provide an explicit expression for the quantile of a mixture of two random variables. The result is useful for finding bounds on the Value-at-Risk of risky portfolios when only partial dependence information is available. This paper complements the work of [4].

Réarrangement, inégalités maximales et théorèmes ergodiques fractionnaires

Michel Broise, Yves Déniel, Yves Derriennic (1989)

Annales de l'institut Fourier

Étant donné un semi-flot mesurable ( θ x ) x + d préservant une mesure de probabilité μ sur un espace Ω , nous considérons les moyennes ergodiques t - d + d ϕ ( x / t ) f θ x d x ϕ est un “poids” à support compact sur + d , c’est-à-dire que ϕ vérifie ϕ 0 et ϕ ( x ) d x = 1 . Nous démontrons la convergence p.p. de ces moyennes quand t + si f appartient à l’espace de Lorentz défini par le poids ϕ * qui est le réarrangé décroissant de ϕ . En particulier, pour d = 1 , on obtient la convergence p.p. des moyennes de Césarò d’ordre α

Robust estimation of the scale and weighted distributions

Paweł Błażej (2007)

Applicationes Mathematicae

The concept of robustness given by Zieliński (1977) is considered in cases where violations of models are generated by weight functions. Uniformly most bias-robust estimates of the scale parameter, based on order statistics, are obtained for some statistical models. Extensions of results of Zieliński (1983) and Bartoszewicz (1986) are given.

Robust optimality of Gaussian noise stability

Elchanan Mossel, Joe Neeman (2015)

Journal of the European Mathematical Society

We prove that under the Gaussian measure, half-spaces are uniquely the most noise stable sets. We also prove a quantitative version of uniqueness, showing that a set which is almost optimally noise stable must be close to a half-space. This extends a theorem of Borell, who proved the same result but without uniqueness, and it also answers a question of Ledoux, who asked whether it was possible to prove Borell’s theorem using a direct semigroup argument. Our quantitative uniqueness result has various...

Currently displaying 281 – 300 of 425