La convergence presque sûre des -moyennes de Césaro
Consider a random walk in random environment on a supercritical Galton–Watson tree, and let τn be the hitting time of generation n. The paper presents a large deviation principle for τn/n, both in quenched and annealed cases. Then we investigate the subexponential situation, revealing a polynomial regime similar to the one encountered in one dimension. The paper heavily relies on estimates on the tail distribution of the first regeneration time.
In this paper we obtain the central limit theorems, moderate deviations and the laws of the iterated logarithm for the energy Hn=∑1≤j<k≤nωjωk1{Sj=Sk} of the polymer {S1, …, Sn} equipped with random electrical charges {ω1, …, ωn}. Our approach is based on comparison of the moments between Hn and the self-intersection local time Qn=∑1≤j<k≤n1{Sj=Sk} run by the d-dimensional random walk {Sk}. As partially needed for our main objective and partially motivated by their independent interest,...