Cadenas de Markov en poblaciones aleatorias y probabilidades en cadena generalizadas.
To derive a Baum-Katz type result, a Chover-type law of the iterated logarithm is established for weighted sums of negatively associated (NA) and identically distributed random variables with a distribution in the domain of a stable law in this paper.
In extremal estimation theory the estimators are local or absolute extremes of functions defined on the cartesian product of the parameter by the sample space. Assuming that these functions converge uniformly, in a convenient stochastic way, to a limit function g, set estimators for the set ∇ of absolute maxima (minima) of g are obtained under the compactness assumption that ∇ is contained in a known compact U. A strongly consistent test is presented for this assumption. Moreover, when the true...
Let , , be a double array of independent and identically distributed (i.i.d.) real random variables with , and . Consider sample covariance matrices (with/without empirical centering) and , where and with , non-random symmetric non-negative definite matrix. It is proved that central limit theorems of eigenvalue statistics of and are different as with approaching a positive constant. Moreover, it is also proved that such a different behavior is not observed in the average behavior...
In the present paper, we have established the complete convergence for weighted sums of pairwise independent random variables, from which the rate of convergence of moving average processes is deduced.
The rate of moment convergence of sample sums was investigated by Chow (1988) (in case of real-valued random variables). In 2006, Rosalsky et al. introduced and investigated this concept for case random variable with Banach-valued (called complete convergence in mean of order ). In this paper, we give some new results of complete convergence in mean of order and its applications to strong laws of large numbers for double arrays of random variables taking values in Banach spaces.