Random dynamics and its applications.
Let ξ(k, n) be the local time of a simple symmetric random walk on the line. We give a strong approximation of the centered local time process ξ(k, n)−ξ(0, n) in terms of a brownian sheet and an independent Wiener process (brownian motion), time changed by an independent brownian local time. Some related results and consequences are also established.
Étant donné un semi-flot mesurable préservant une mesure de probabilité sur un espace , nous considérons les moyennes ergodiques où est un “poids” à support compact sur , c’est-à-dire que vérifie et . Nous démontrons la convergence p.p. de ces moyennes quand si appartient à l’espace de Lorentz défini par le poids qui est le réarrangé décroissant de . En particulier, pour , on obtient la convergence p.p. des moyennes de Césarò d’ordre