Error bounds on the non-normal approximation of Hermite power variations of fractional Brownian motion.
This work provides rates of convergence in the Darling-Kac law for infinite measure preserving Pomeau-Manneville (unit interval) maps. Along the way we obtain error rates for the stable law associated with the first return map and the first return time to some suitable set inside the unit interval.
Let {bH(t), t∈ℝ} be the fractional brownian motion with parameter 0<H<1. When 1/2<H, we consider diffusion equations of the type X(t)=c+∫0tσ(X(u)) dbH(u)+∫0tμ(X(u)) du. In different particular models where σ(x)=σ or σ(x)=σ x and μ(x)=μ or μ(x)=μ x, we propose a central limit theorem for estimators of H and of σ based on regression methods. Then we give tests of the hypothesis on σ for these models. We also consider functional estimation on σ(⋅)...