Étude asymptotique d'une marche aléatoire centrifuge
Nous étudions un exemple de transformation non uniformément hyperbolique de l’intervalle . Des exemples analogues ont été étudiés par de nombreux auteurs. Notre méthode utilise une théorie spectrale, pour une classe d’opérateurs vérifiant des conditions faibles de Doeblin-Fortet, introduite dans [1]. Elle nous permet, en particulier, de donner une estimation de la vitesse de décroissance des corrélations pour des fonctions non höldériennes.
Let D be either a convex domain in or a domain satisfying the conditions (A) and (B) considered by Lions and Sznitman (1984) and Saisho (1987). We investigate convergence in law as well as in for the Euler and Euler-Peano schemes for stochastic differential equations in D with normal reflection at the boundary. The coefficients are measurable, continuous almost everywhere with respect to the Lebesgue measure, and the diffusion coefficient may degenerate on some subsets of the domain.
We study convergence in law for the Euler and Euler-Peano schemes for stochastic differential equations reflecting on the boundary of a general convex domain. We assume that the coefficients are measurable and continuous almost everywhere with respect to the Lebesgue measure. The proofs are based on new estimates of Krylov's type for the approximations considered.
Consider independent and identically distributed random variables {X nk, 1 ≤ k ≤ m, n ≤ 1} from the Pareto distribution. We select two order statistics from each row, X n(i) ≤ X n(j), for 1 ≤ i < j ≤ = m. Then we test to see whether or not Laws of Large Numbers with nonzero limits exist for weighted sums of the random variables R ij = X n(j)/X n(i).
The author studies the linear rank statistics for testing the pypothesis of randomness against the alternative of two samples provided both are drawn grom discrete (integer-valued) distributions. The weak law of large numbers and the exact slope are obtained for statistics with randomized ranks of with averaged scores.
Let us consider a solution of a one-dimensional stochastic differential equation driven by a standard Brownian motion with time-inhomogeneous drift coefficient . This process can be viewed as a Brownian motion evolving in a potential, possibly singular, depending on time. We prove results on the existence and uniqueness of solution, study its asymptotic behaviour and made a precise description, in terms of parameters , and , of the recurrence, transience and convergence. More precisely, asymptotic...
This article presents an alternative approach to statistical moments within non-standard models and by the help of these moments some limit theorems are reformulated and proved.